
11

Essential Education for Computational
Design in Architecture

ABSTRACT

Computation methods have been introduced in architectural education

out of impressive precedence, increased demand, and the need for

diversity. While excellent programs have emerged at a few pioneering

schools, digital integration is costly and uncertain, and can challenge

established programs and bureaucracies. As a result, many schools stand

unable or unwilling to incorporate the technology. This paper presents a

rigorous approach to providing an essential education for computational

design that addresses many of the challenges facing computational

methods in education. It includes a case study for the implementation of

this approach at the NewSchool of Architecture and Design.

BACKGROUND

The utility of computers as an efficient way to produce architectural

drawings was the basis behind early commercial computer-aided design

(CAD) applications. Documentation continues to be the most dominant

use of computers in architectural practice today. However, a different

view that focuses on the potential of using digital processes as an integral

part of design and construction started long before commercial CAD.

RAJAA ISSA
Robert McNeel & Associates
Seattle, WA
NewSchool of Architecture
and Design
San Diego, CA

“A meaning f u l bu i ld ing of the d ig i t a l age i s not

j u s t a n y b u i l d i n g t h a t w a s d e s i g n e d a n d b u i l t

us ing dig i ta l tools: i t i s one that could not have

b e e n e i t h e r d e s i g n e d o r b u i l t w i t h o u t t h e m ”

- Mario Carpo [1]

Essential Education for Computational Design in Architecture

12 PRACTICE: Computational Processes in Architecture + Design

Early ideas included Pattern Language [2], Shape Grammers [3], and

Evolutionary Architecture [4]. New architectural theories such as Blob

Architecture were directly influenced by the capabilities of computer

graphics [5]. Those ideas remained largely confined to research, and

found very limited applicati on in practi ce.

In education, computers were mostly introduced in courses centered

around commercial CAD applicati ons. These courses are typically isolated

from the design studio and other classes. This approach meant that

students were given the means to produce complex forms, without the

knowledge of how to analyze these forms in the context of design and

building [6]. The poor results were blamed on computers that allegedly

encouraged complexity without meaning (figure 1). As a result, many

educators distanced themselves from computers and discouraged their

use in design. Many of these views linger among educators to this day.

While schools were busy ignoring computers, a small section of

architectural practi ces approached the new technology quite diff erently.

They saw an opportunity to use computers to realize complex forms

that had never been built before. These architects started to use

specialized computer programs uncommon to architecture such as Cati a

and Rhinoceros to accurately model form. They teamed up with clients

and invested massive amounts of effort and resources. Many players

across the whole building industry were involved in their research and

innovati on. The results were breathtaking. Architecture witnessed the

emergence of new fascinating forms that captured the imagination

of the architectural community and the public alike (figure 2). More

importantly, it revoluti onized how computers were used in architecture.

The interest in computational methods as an active part of building

Figure 1: Student designs directly infl uenced
by 3D computer operations of Twist and
Boolean. Image by Lynn [5].

1

13

architecture was resurrected.

This mounting investment in computational methods motivated the

creation of new intuitive algorithmic tools that are accessible through

the new generati on of computer aided architectural design applicati ons

(CAAD). New programs such as Generati ve Components for Microstati on

and Digital Project for Cati a were introduced, both relying on text-based

programming. They found some success, but it was Grasshopper for

Rhinoceros with its visual scripting environment that defined a turning

point in the popularity of algorithmic methods amongst designers.

The community devoured parametric methods with tremendous

interest at an unprecedented scale. New architectural theories such

as Parametricism started to gain momentum [7]. The newfound

popularity of parametric design supported by the intuitive, accessible

and open nature of Grasshopper started to attract an increasing

number of professionals to build a variety of new functionality on top

Figure 2: Complex forms in built
architecture. Images by (clockwise from top
left): Wilth [12], Ardfern [13], Taxiarchos228
[14], Guichard [15].

Essential Education for Computational Design in Architecture

2

14 PRACTICE: Computational Processes in Architecture + Design

of Grasshopper. The community involvement transformed Grasshopper

from a tool into a rich environment supporting activities such as site

studies, structural evaluation, environmental analysis, prototyping,

robotics, evolutionary methods of optimization, and interfacing with

people and devices [8]. Parametrics started to offer a viable integrated

solution to support every aspect of the design process. What made this

new environment even more valuable was the rapid development of

digital fabrication methods that tied the digital world to physical reality.

Computational methods became embedded in a wide range of design,

engineering, and building activities in contemporary architecture [9].

The Challenges of Computational Methods in Architectural
Education

While the prospect of computational design methods is fascinating

and its utility has become evident in practice, schools are still unsure

about how to support them in their curricula. The challenges can be

summarized as the following:

1.	 Many educators are not convinced of the value of computational

methods in architectural education. Hence, they are unable or

unwilling to embrace computational methods as part of their

teaching.

2.	 Algorithmic thinking and computational methods are not trivial

to teach and require specialized resources and careful planning.

3.	 Software and fabrication equipment is changing rapidly, which

poses a financial and planning challenge.

4.	 While there are many courses, studios and workshops that

teach computation in many architectural schools, most are not

documented and their effectiveness is not evaluated. There are no

recommended guidelines or standards that can help institutions

decide ‘what’ and ‘how’ to include about computational methods in

their programs.

Essential Education for Computational Design

This paper proposes an essential education for computational design

(EECD); one that attempts to address these challenges and provide

meaningful education at the same time. It has been based on an

15

extensive research study by the author through analysis and construction

of computational tools and supporting professionals in the building

industry. EECD identifies five core components that are key for any

comprehensive understanding of computational methods in architecture.

There are many other areas of specialization within computation

that have great application in architecture, but it would be unwise to

introduce them without providing the essential core subjects shown in

figure 3.

With EECD, students are expected to develop:

•	 A strong background in vector mathematics and geometry

•	 Skills in algorithmic thinking

•	 An understanding about computation as an integral part of all

stages of the design process

•	 Hands-on experience with different fabrication methods and the

ability to transition back and forth between the digital to the physical

•	 Critical understanding of the theory of computational methods

There are a few considerations that should be mentioned when designing

an implementation of EECD, depending on the fluency of faculty

members in computation and available resources. For example, schools

new to computation may want to introduce EECD as a self-contained

sequence of classes so that it does not disrupt existing curriculum,

concurrently educating the faculty and limiting the amount of up-front

commitment. Another important consideration is to try to develop

teaching material that is relevant, engaging and adaptable to the fast

Essential Education for Computational Design in Architecture

Figure 3: The components of the essential
education in computational design (EECD).
Image by author.

3

16 PRACTICE: Computational Processes in Architecture + Design

pace of the digital technology.

iNSTRUCTiONAl philOSOphy

It is important to learn ‘how’ to use computati onal methods, but it is even

more important to acti vely engage in questi oning ‘why’ and ‘when’ they

should be used. Developing the ability to recognize the context in which

computati onal methods add value is key to successful uti lizati on of any

design method. Involving students in criti cal discussions about precedent

helps them develop a bett er understanding of meaning and context.

Algorithmic thinking skills develop over an extended period of time.

Also, the concepts of mathematics and geometry may be challenging,

especially to design students. Therefore, it is best to develop knowledge

in algorithms, mathematics and geometry early in the program before

involving any creati ve design acti vity. Designs should start as simple, and

gradually increase in complexity over ti me (fi gure 4).

The material needs to be relevant and engaging in order to appeal

to creative and visual thinkers. The program should utilize intuitive

computati onal tools with instant visual feedback when possible to help

facilitate quick cycles of synthesis and refl ecti on [10]. It is also important

4

Figure 4: Progress of algorithmic complexity
in the ‘Adaptive Skin’ project of NewSchool
student Julio Medina. Image by author.

17

to use computational methods to solve problems that are harder to

resolve when using other design methods (fi gure 5).

Using digital tools in conjuncti on with other design media helps students

improve their representational and communication skills. When

appropriate, the use of sketching and physical modeling should be

encouraged alongside computati on. Digital fabricati on and the physical

realizati on of digital models should be at the center of the program. The

transiti on between the digital and the physical is a very powerful tool to

help students appreciate both the implications of decisions made with

the digital tools,WW and the feasibility to realize them in physical form

Essential Education for Computational Design in Architecture

5

6

Figure 5: The use of computational method
to investigate responsive facades, student
work. Image by Christian Garcia.

Figure 6: Different digital fabrication
methods explore different aspects of design.
Student work: Julio Medina. Images by
author.

18 PRACTICE: Computational Processes in Architecture + Design

(figure 6).

The EECD program should include study of the theory of computation.

This theory component includes studying digital processes employed

successfully in real projects and discusses various limitations and

potentials. Students should be encouraged to develop critical

understanding of the field and research new ways to enhance and

develop current practices and technologies.

Case Study: EECD at NewSchool of Architecture and Design

NewSchool of Architecture and Design in San Diego, California was

established in 1980. The school has a strong focus on practitioners

pursuing education in architecture and design. While faculty members

are accomplished educators and practitioners, they generally have little

expertise in computational methods. The first computer lab opened

in the early 1990’s, and started with AutoCAD in terms of software.

Revit and FormZ followed in 2007, with Rhinoceros 3D and Grasshopper

introduced in 2008. The materials lab of the school is equipped with laser

cutters, computerized numerical control (CNC) routing machines, wood

working tools, and an advanced 3D printer. In the summer of 2013, the

author joined the school with the vision to introduce comprehensive

education in computational design without disrupting the existing

curriculum. She started a new series of classes in ‘computational design

methodology’. These classes evolved into a sequence of three three-

credit elective classes that stretched across one academic year.

Classes met four hours a week for 33 weeks. The sequence was open to

all students; from second year undergraduate to final year graduate, with

7

Figure 7: Essential Education in
Computational Design (EECD) course
structure as implemented at NewSchool of
Architecture and Design. Image by author.

19

no prerequisites to enter the first course. Figure 7 illustrates how the

program is structured.

The following is a descripti on of the subjects taught in the program.

Mathemati cs and Geometry

While some students came to the program with good analyti cal skills and

some facility with mathemati cs, most were very poor in this area. The

foundation unit was chosen to be the first in the sequence. Essential

vector mathematics, transformations and NURBS geometry concepts

were introduced in a design-related context. A visual approach to

teaching mathemati cs through Grasshopper was adopted to help with the

visualizati on of abstract concepts [11].

Algorithms and Data Structures

As menti oned before, developing skills in logical thinking and algorithmic

problem solving takes significant time. Therefore, this subject was

included in all classes within the sequence. Students started with simple

problems that gradually increased in complexity. Weekly problems

were given to analyze and solve algorithmically under ti me constraints,

aiming to developed fl uency. They also studied various ways to store and

manipulate digital data.

Parametric Design and Digital Fabricati on

During the second unit, the students designed an adaptive skin system

Essential Education for Computational Design in Architecture

8

9

Figure 8: Graphic display of continuity for
various NURBS (Non-uniform rational basis
spline) curves. Image by author.

Figure 9: Design of algorithms involves
analyzing desired output into well-defi ned
steps. Image by author.

20 PRACTICE: Computational Processes in Architecture + Design

for a skyscraper using parametric methods. The skins were required to

respond to at least one constraint that was environmental, functional

or aestheti c. Students completed three cycles of parametric design and

fabrication: building mass, paneling geometry, and ultimately a fully

responsive façade system. The ‘adaptive skin’ project not only helped

students understand the process of rationalizing design forms, it also

enabled both experimentati on with diff erent fabricati on techniques and

the development of abiliti es for building fully parametric design soluti ons.

Digital Analysis and Opti mizati on

In the third unit, the performance of the adaptive facades developed

during the second unit was evaluated and further developed using a

variety of digital analysis and optimization tools. The students were

deliberately exposed to a variety of tools to help them develop the ability

to quickly evaluate, learn, and uti lize digital tools. They were encouraged

to criti cally analyze their soluti ons and produce performati ve designs. By

the end of this fi nal unit, they started to appreciate the full cycle of design

using computati onal methods.

Theory and Research

Simultaneously, students were required to research one of the prevailing

questions in the field of computational design, tackling issues such as

representation, communication, digital processes and the role of the

architect in the digital age. They shared research through a series of

seminars. This theory and research component exposed students to

10

Figure 10: Sequence: abstract digital form to
a fully rationalized physical model. Student
work: Anthony Rodriguez. Image by author.

Figure 11: Glare, structural, and thermal
analysis followed by optimization using
the Grasshopper environment. Images of
student work (top to bottom): Ryan Stangl,
Yangyi Situ, Heiarii Li Cheng.

11

21

current debates in the fi eld, and gave them a bett er understanding of the

technology, processes, and issues involved.

The infl uence of EECD at NewSchool

Many of the students who parti cipated in the program incorporated their

newfound skills of algorithmic thinking into their design studio projects

and research. Other students and faculty members were exposed to the

new methods, and started to gradually appreciate the uti lity and impact

of computational methods in design. After only two years, the course

enrollments are at full capacity.

CONClUSiONS

Essential education in computational design (EECD) identifies five core

subjects that need to be included in any program. It aims to provide

a comprehensive education with strong focus on the foundational

knowledge of geometry and algorithmic thinking. EECD helps students

reach a level of fl uency with digital design tools and fabricati on methods

that they can utilize appropriately at any stage of the design process.

Figure 12: An abstract building mass ideas
(left image) evolves into fully rationalized
solutions (right image). Images of student
work: Christopher Voltl.

12

Essential Education for Computational Design in Architecture

22 PRACTICE: Computational Processes in Architecture + Design

The implementation at NewSchool has shown very promising results

on both an individual level, as well as influencing the school’s culture in

general. Most students continued their pursuit of the field through their

design studio projects and research. Their work provided a precedent for

other students and faculty members and introduced them to the value

of computational methods in architecture. The school is also seeking to

establish a new certification program in computational design based on

the EECD.

AcknowledgementS

I would like to acknowledge the great support of Kurt Hunker, the

graduate architecture chair at NewSchool, who trusted my vision

and gave me the opportunity to develop the program at NewSchool. I

would also like to thank our materials lab manager, Erik Luhtala, whose

expertise in fabrication has been an invaluable resource for the program.

I am very grateful to my colleague, Michael Riggin, who did not spare any

efforts to support and push the program forward. Last, but not least,

I am indebted to my very bright and faithful students. Their ideas and

enthusiasm inspire me everyday. Without all these people, my thoughts

and aspirations would have never materialized.

23

References / IMAGE CREDITS
1.	 Carpo, Mario. The Digital Turn in Architecture 1992-2012. Chichester: Wiley, 	

2013. Print.

2.	 Alexander, Christopher, Sara Ishikawa, and Murray Silverstein. A Pattern
Language: Towns, Buildings, Construction. New York: Oxford UP, 1977. Print.

3.	 Stiny, George. “Introduction to Shape and Shape Grammars.” Environment
and Planning B: Planning and Design Environ. Plann. B 7.3 (1980): 343-51.
Print.

4.	 Frazer, John. An Evolutionary Architecture. London: Architectural Association,
1995. Print.

5.	 Lynn, Greg. Folds, Bodies & Blobs: Collected Essays. Bruxelles: La Lettre Volée,
1998. Print.

6.	 Issa, Rajaa, and Jules Moloney. “The Potential of Computer Modeling
Software to Support a Consideration of Building Materials in Architectural
Design Education.” Connecting the Real and the Virtual - design e-ducation:
20th eCAADe Conference Proceedings (2002): 440-447. Print.

7.	 Schumacher, Patrik. “Parametricism: A New Global Style for Architecture and
Urban Design.” Architectural Design 79.4 (2009): 14-23. Print.

8.	 Peters, Brady. “Computation Works: The Building of Algorithmic Thought.”
Architectural Design 83.2 (2013). Print.

9.	 Marble, Scott. Digital Workflows in Architecture: Designing Design --
Designing Assembly -- Designing Industry. Basel: Birkhäuser, 2012. Print.

10.	Schon, Donald. The Reflective Practitioner: How Professionals Think in Action.
San Francisco: Jossey Bass, 1987. Print.

11.	 Issa, Rajaa. The Essential Mathematics for Computational Design, Third
Edition. Seattle: Robert McNeel & Associates, 2013. Print.

12.	Wilth. (2013). Heydar Aliyev Cultural Center Baku [Online image]. Retrieved
fromhttps://flickr.com/photos/wilthnet/8999193744

13.	Ardfern. (2010). Guggenheim Museum, Bilbao, July 2010 [Online image].
Retrieved from https://upload.wikimedia.org/wikipedia/commons/e/e8/
Guggenheim_Museum%2C_Bilbao%2C_July_2010_%2811%29.JPG

14.	 Taxiarchos228. (2011). Graz-Kunsthaus1 [Online image]. Retrieved from
https://upload.wikimedia.org/wikipedia/commons/4/40/Graz_-_Kunsthaus1.
jpg

15.	Guichard, A. (2010). 30 St Mary Axe from Leadenhall Street [Online image].
Retrieved from https://upload.wikimedia.org/wikipedia/commons/4/4c/30_
St_Mary_Axe_from_Leadenhall_Street.jpg

Essential Education for Computational Design in Architecture

